In an animal cell, especially neuron and in particular its axon, while there is electrical resistance and capacitance mechanism in the cell, which play essential roles in the cable theory model of neuronal action potential transmission, is there a prominent self inductance mechanism in the sense of electromagnetism?
Answer
What one thinks, no matter how intuitive it may appear is not particularly relevant in science. The inductance associated with a neural axon has been well documented since Cole (1966). Its role in the propagation of neural signals is developed extensively in http://neuronresearch.net/hearing/pdf/7Projection.pdf#page=39 . The actual development begins earlier in Section 7.4 on page 322 of that document.
Failure to consider the inductance associated with any alternating electrical signal passed along a coaxial cable leads to disaster. The first undersea cable based on the ideas of William Thompson,Lord Kelvin, and described as an RC cable by Hermann (page 322 in the above document) was a technical and financial disaster. Two years later, a more sophisticated RLC cable based on Maxwell's Equations for a coaxial structure was laid with great success. No RC cable has ever been used in practice since that time. For unknown reasons, the biological community keeps trying to ignore the inductance of the coaxial myelinated axon (leading to ridiculous modeling data). This appears to be the result of introductory courses in electricity for non-engineers trying to avoid the necessary mathematics to understand electromagnetic signal propagation through space and along various types of cables and waveguides.
No comments:
Post a Comment